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CHEMKINEPROISTAESIONE 101 thE adVAanCed

USEN— MOre features and PErformance

e More modules included in package
— Uncertainty, Particle Tracking, Reaction Path Analysis
e Advanced analysis options

e New reactor models and features

e Performance improvements

— Solver speed
— Solution post-processing

e Enhanced work-flow / user experience
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Outline —the Highlights

e Advanced analysis modules

— Reaction path analysis
— Uncertainty analysis

e Advanced reactor models and features

— Multi-zone (HCCI) Engine Model
— Particle formation and tracking capabilities extended

e Focus on performance for large, complex systems

— Improved solver robustness and speed

— Advanced methods for accurate ignition calculations

— More automated Flame-speed Calculator set-up

— Tear-stream algorithm for heterogeneous reactor networks

e Improved work-flow, interactivity, efficiency
N2
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@Qutline
e Advanced analysis modules

— Reaction path analysis
— Uncertainty analysis

e Advanced reactor models and features

— Multi-zone (HCCI) Engine Model
— Particle formation and tracking capabilities extended

e Focus on performance for large, complex systems

— Improved solver robustness and speed

— Advanced methods for accurate ignition calculations

— More automated Flame-speed Calculator set-up

— Tear-stream algorithm for heterogeneous reactor networks

e Improved work-flow, interactivity, efficiency
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The new Reaction: PathrAnalyzer (RPA)

Example anaIyS|s of reaction paths In CH,/air flame
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he RPARroOVIGES INTEACTIVE CONTTOI GVET

e “Tree” view
(vs. hierarchical)

e Reaction focus
(Vs. species)

e Line-thickness
gives visual cue
for contribution

— Absolute or relative
scale

e Morein Demo
later...
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The RPAYS avallable o usewithiany: of

CHEMKIN-PR@'S reactor moedels

e All transient or steady state models

— Step through solution points in time
— Select solution distance for 1-D models

e Apply to results from any case in a parameter
study

e Apply to results from any “Cluster” in a
reactor network

e Includes print options for all graphs

7
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Uncertainty/analySiSiproVIdES: a Way to

ASSESS the effects ol Unknown Moedel InpULs

e Based on polynomial chaos expansion theory and
collocation methods

e Can be used with any CHEMKIN project

— Any input parameter can be identified as “uncertain”

— Any output variable can be identified as a target for which we want to
know the uncertainty impact

e Includes quantitative variance analysis

— Which inputs contribute most to the target-output uncertainties

Variant Inputs
P(k,) vy = (K Ky ko) P(y+) |

_&) K, Yo = f (Ky,Ky,- ... Kn)

. P
P(Km) /\ ., v2) Qo
Kin o Y2 “7IN
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Examples 2-stage combustorwith catalyiic

and NeGmMogeneouUs combustion

Variant Inputs

(1) % Catalyst dispersion
» Gaussian distribution
« Std deviation = 5%

(2) Fuel-air equivalence ratio
« Gaussian distribution

ati =)
° - KO
 Std deviation = 5%

ARRARRRRARADT
40

reactor_network__two_stage_catahytic_combustor)

q] i

| Zoom || Slreamline | Display Options | Print | L roject |

Determine variance of outputs
(1) NO exiting the combustor

(2) CO exiting the combustor

Variance contributions
Input NO CcO

Scaled Probability
N
=
|

% Cat. Disp. 53% 39%
1x10° [— .\,\ -’ ;/
- Equiv. Ratio | 47% | 61% - =
1><1l3;'s (jf l z{""«v
B reaction

DESIGN



SEetlprand analysis are guided throughithe

CHEMKIN-RPRO® User: Interface
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Qutline
e Advanced analysis modules

— Reaction path analysis
— Uncertainty analysis

e Advanced reactor models and features

— Multi-zone (HCCI) Engine Model
— Particle formation and tracking capabilities extended

e Focus on performance for large, complex systems

— Improved solver robustness and speed

— Advanced methods for accurate ignition calculations

— More automated Flame-speed Calculator set-up

— Tear-stream algorithm for heterogeneous reactor networks

e Improved work-flow, interactivity, efficiency
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New HEE| Multiczone Engine model allows

PEtter prediction o IgnItion, EMISSIGNS

e Permits the use of detailed combustion chemistry
— Ignition timing
— pollutant formation
e Addresses in-cylinder temperature and/or
composition stratifications
— Different heat loss for different regions
— Imperfect mixing of residual or recycled exhaust gas
e Facilitates parametric studies

— Engine/operating parameters
— Mechanism reduction

QL
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INE CONCEPLIS PASEA NI PIEVIGUS MOUEIS

reported nithe literature
e Aceves, et al. (SAE 2000-01-0327)

e Zones are conceptual regions

— Floating and non-contiguous
— Total zone volume must equal to cylinder volume
— Can be derived from a cold-flow CFD model

HCCl ENGINE

N . ea-::l
MUTIPLE I ‘\:- @ I
IGNITION POINTS — "™
e at® —>
FUELANDAIR _ B2 8 & & & . Cylindar
MIXTURE : ; wall

1
| Cantarlina
ttps://www.lInl.gov/str/April04/Aceves. html .\\ ' ; -
= 5™
/N
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ZONES Interactithrougn pressure Work

e Pressure is uniform inside the cylinder
e No mass or heat transfer takes place between zones

— Zones can exchange heat with wall
e Zones interact with each other through pressure work

e Each zone can exchange heat with cylinder wall

— Each zone has its own wall heat transfer rate

— Zone wall surface area is given as a constant fraction
of instantaneous cylinder wall
* Zero surface area fraction will make the zone adiabatic

Qi
< | o
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Wencludethe oplion teyuUSse a tWe-Step

solutioniappreach employing CEDdata
e Two step hybrid approach

1. Cold-flow CFD simulation determines in-cylinder conditions
before chemical kinetics become important
— No chemistry, hence very short CFD simulation time
— Account for temperature variations due to compression / mixing
— Use temperatures at specified crank angle to define zones
2. Use the multi-zone model with fully detailed kinetics
— Energy equation to compute zone temperatures

— Predict combustion phasing
— Predict emissions

at -20 CAD
| > Al
N
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ResultsSicomparewellfterpublished medel of

ACGEVES et al., fornatural gas engine
e Hybrid approach used for temperature solution

— Constrained temperature profile used up to user-specified crank angle
* Temperature could be obtained from CFD simulation
— Fully coupled energy equation solved after transition

e Same kinetics mechanism used for comparison
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Solutionspeed allews: use ofifully,detaned

surrogate-fuelf mechanisms

e Hardware

— 64-bit Linux JEe0G0g 1 week
— 2.8 GHz Intel Xeon CPU

100000 : Day
- 6 GB RAM 5-Comp0nentg;°|:‘/
10000

e Mechanisms ; /./ Lo
— 5-component gasoline it P
* 1380 species £
* 6138 reactions = CH, (GRI 3.0) ELl
— CH4 (GRI 3.0) 10 —h—
* 53 species /
* 325 reactions A
Number of Zones
N2
:'!1‘;:
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The Particle liracking Moedulerallows: detarled

Kinetics ol particle nucleation andigrowth
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VIOMENLS ofithe particliersize distiubuticns

are solved, With Kinetics data as Input

Coagulation

Surface
reactions

Nucleation
reactions

Q2

Moment Equations N
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KINENICS datalls; provided through SUriaGe:

chemistryv imputfile

e Nucleation of particles from gas-phase species

— e.g., poly-aromatic hydrocarbons (PAHSs) for soot
— Rates controlled by collision frequencies
— Multiple nucleation events, precursors allowed

e Growth and reduction by general surface reactions

— Vapor-deposition type reactions
— Condensation of large species

e Tracking of particle state includes surface state

— Provides particle mean diameter, mass & volume fractions
— Average surface state and total surface area

7
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N CHENMKIN-PRO; particle thacking/Is: now

avallaple for all flame models

e Models that can use particle tracking:

— 0-D Closed Homogeneous Reactors [pm|[O]lC)

— Perfectly Stirred Reactors 95

— Plug-flow Reactors |32 &8

— Shear-layer Flow Reactors

— Premixed, burner-stabilized flames |«

— Flame-speed Calculator

— Counter-flow flames =2

il m g

7

< 1 N
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Qutline
e Advanced analysis modules

— Reaction path analysis
— Uncertainty analysis

e Advanced reactor models and features

— Multi-zone (HCCI) Engine Model
— Particle formation and tracking capabilities extended

e Focus on performance for large, complex systems

— Improved solver robustness and speed

— Advanced methods for accurate ignition calculations

— More automated Flame-speed Calculator set-up

— Tear-stream algorithm for heterogeneous reactor networks

e Improved work-flow, interactivity, efficiency
QI
NS
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We have made majer improvEmMERtS terthe

core solver technoelogy i CHEMKIN-PR®

e Both steady-state and transient solvers accelerated

e Net result: ~2X to 20X speed-up & more robust

Benchmarks vs. CHEMKIN 4.1

25

Advanced models |I|
0 ] I II|

LPCVDB tch Transient PSR IC engine model 103-PSR network
uuuuu

Benchmarks vs. Chemkin I

15

B CHEMKIN 4.1

N
o

© CHEMKIN-PRO
10

—_
al

Classic models

—_
o

SPEED UP OVER Chemkin Il

a

SPEED-UP OVER CHEMKIN 4.1

Burner Flame (54) Flame-s peed (313) Burner Flame (101) PSR (1034)
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Adaptive stepping o eutputieii selutien data

facllitates acclrate visualization and analysis

e Important for ignition problems

— Avoid huge solution files that were previously required for output
at fixed time-steps

— Accurate post-processing of ignition-delay behavior
e Assures accuracy of output

— consistent with the adaptive solver
— Default: output every 20 solver-intearation steps

. 2500 -I—I T | 1 1 | LI LI I_
o Optlons_ to control E o o oTomperature (€ -
ad aptatl on < 2000 [— R
£ ¢ o]
— Every xx solver-integration 5 _ =
steps g F .
— Every yy delta in specified #1000 =
solution variable value .

sm -,_I | 1 | | 1 1 | 1 | 1 1 1 1 | | | | I_ \‘Xl'f/

0.016 0.018 0.020 0.022 Z}j, o~

Time (sec) Iy
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e set-Upiorfiame-Speed Simulations nas

Been simplifiedifor BEter CONVEIGENCE

e Auto-determination of:

— Initial temperature profile, including max (flame)
temperature

— Initial species profiles (products, intermediates)
— Initial grid and domain for accurate solution
— Appropriate solver parameters

e User only provides

— Un-burned gas temperature
— Reactant fractions

e Provides convergence and accuracy for most
cases, with no need for continuations 0,

~M e
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ReESUlts o GRIE=MECHISHOW/ CONVERJENCGE 1N

alllcases without user intervention

e 84 cases run- all converged, with default solver settings

200
® 160 - /—\
@ i
£ )
= 120 -
©
) ]

()] ] e -

& 80 e .

0) . e

s

o 407 cp T T RTRI Ty
0 ] T T T T 1 T 1 1
0.6 0.8 1 1.2

Equivalence ratio

1.4

- - - -Model, 300 K
— - -Model, 500 K
—— Model, 700 K
x  Data, Vagelopoulos et al.,

300 K

s Data, Van Maaren et al.,
300K

e Similar results found for n-heptane

28

— Required tighter tolerances and setting a few intermediates
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New Stearsstream algenthmiallews

[ecycling In NEIERGFENEOUS I'eactor NnetWoerks

e [terative solver to converge “recycling” streams

e Multiple and nested “tears” are allowed

e Parallel “streams” allowed

“Torn” stream
B
. C—————————— /
C—c—B i B3 iEIE
o
= & B
G
= 5
&>
&
Cr—lC >3 & :
=
{ilx\
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Exampleruse ofitearsstreame calculate Ve

conditions for € engine with' EGR

e Accounts for steady-state after several cycles

Tear-stream

/ algorithm

L EGR_merde (C1_R13

B3

Heat_Loss (C3_R1) C3_ Gai Splitter

e

Mix EGR with
fresh charge

Engine simulation, with
detailed kinetics Residual gases/EGR heat loss

Qi
TN
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Qutline
e Advanced analysis modules

— Reaction path analysis
— Uncertainty analysis

e Advanced reactor models and features

— Multi-zone (HCCI) Engine Model
— Particle formation and tracking capabilities extended

e Focus on performance for large, complex systems

— Improved solver robustness and speed

— Advanced methods for accurate ignition calculations

— More automated Flame-speed Calculator set-up

— Tear-stream algorithm for heterogeneous reactor networks

e Improved work-flow, interactivity, efficiency
2
NS
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hEere have beenimany enhanCeEMeENRts for.

reactor diagramming Interactivity,

e Diagram enhancements

— Undo (Ctrl-Z) and Redo (Ctrl-Y) for all diagram actions

* Multi-select, move, add/delete reactors, add/remove connections,
straighten lines

— Zoom option on Diagram View
— Reactor “running” indicator

— Click, Double-click and Right-click options
* Highlight reactor node on Project Tree (click)
* Direct link to input panel (double click)
* View results (right click)
* Analyze results with Graphical Post-processor (right click)

— Option to streamline flow connections
* Minimize splitter and mixer icons in complex diagrams

— Context-sensitive mouse option
* Non-modal method of switching between move and flow- _‘}f‘"“f/’

- —

connection operations N
reaction
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@Other:User Interface Enhancements

® Prog ress indicators e
. =) —~

— For transient problems = < :

* Progress vs. end time & ?
— For steady-state cases &

* Progress vs. grid-resolution criteria

¥ J

— For networks

* ProgreSS Of tear—stream Convergence | Zoom || Streamline | | Display Options | Print | Update Project |

* Per reactor as well as total project - '|Z
. CurrentRun |
— For parameter studies oo | E |
* progress for each run and for all runs
e Improved work-flow in project tree
— Project “clone” option to easily copy project
— Run / Analyze options are grouped logically
* Nominal case vs. Parameter-study options at each step \1/
. . SN
e Export all data to Excel Workbook in one click NS
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Summany; ofi CHEMKIN-PR®

e More analysis capability

e More advanced reactor models
e More speed

e Better robustness

e Better work flow and interactivity

QM
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